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Let a,b, c denote the lengths of the sides of a triangle ABC, let da, db, dc denote

the distances from an arbitrary point P inside the triangle to sides BC,CA,AB ,

respectively, and let Ra : PA,Rb : PB,Rc : PC. Prove that:
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 1
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.
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Definition.

For any line l on the plane and any point P  l we denote via Pl such point

laying in the half-plane distinct from half-plane marked by point P that PPl  l

and PPl  1
distP, l

.

This point Pl we will call "Involution of P with respect to l " (Pic.1)
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Pic.1

Let P be the interior point in the angle A defined by the two half-lines a and b.

Let da and db be distances prom point P to lines a and b respectively and

RA be distance between P and A, i.e. da  PM,db  PN,RA  PA. (Pic.2)

We will prove

Lemma.

Let Pa and Pb be involutions of P with respect to a and b respectively.

Then PaPb  PA and PE  1
RA

where E is intersection point of PaPb and PA.

Proof.



Pic.2

Let PaE1 and PbE2 be perpendiculars from Pa and Pb to PA respectively

(E1,E2  PA ). Since PPaE1  PMA and PPbE2  PNA (as the angles

which constructed by mutually perpendicular sides) then PPaE1similar to

PMA and PPbE2 similar to PNA and from similarity follows
PE1
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 PM
PA

 PE1
1
da

 da
RA

 PE1  1
RA

and

PE2
PPb

 PN
PA

 PE2
1
db

 db
RA

 PE2  1
RA
.

Hence, PE1  PE2 and E : E1  E2 is intersection point of PaPb with PA

and PE  1
RA
.

Let A1,B1,C1 be involution points for P  ABC with respect to lines BC,CA,AB

respectively. Let Ra

 PA1  1

da
,Rb


 PB1  1

db
,Rc


 PC1  1

dc
and da


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
, dc


be

distances from P to sides B1C1,C1A1,A1B1.

Applying lemma we obtain da
  1

Ra
,db


 1
Rb
,dc


 1
Rc

and by replacing

Ra,Rb,Rc, da, db, dc in Erdös-Mordell Inequality

Ra  Rb  Rc  2da  db  dc

with Ra
 ,Rb

 ,Rc
 , da

 , db
 , dc
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, 1
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, 1
dc
, 1
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Rb
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we obtain
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